Date \qquad Week 4

Quadratic Equation

Subtopic: Roots of quadratic equation
Lesson Topic: sum and product of roots.
INSTRUCTIONAL RESOURCES: Graph board and graph papers SPECIFIC OBJECTIVES:

Solving problems involving simultaneous equation
Solving problems involving quadratic equations
solving problems relating to sum and product of roots
Let's α and β denotes roots the roots of the quadratic equation:
$a x^{2}+b x+c=0$, where $a \neq 0$
$a x^{2}+b x+c=0$
using formular:
$\alpha+\beta=(-b) / a, \alpha \beta=c / a$
TEACHER ACTIVITIES: solution to factorization.
Suppose that
$\mathrm{ax} 2+\mathrm{bx}+\mathrm{c}=(\mathrm{x}-\alpha)(\alpha-\beta)$ then
$\mathrm{ax} 2+\mathrm{bx}+\mathrm{c}=0$, if $(\mathrm{x}-\alpha)(\alpha-\beta)=0$ since
$\mathrm{a} \times \mathrm{b}=0$, is true only if either $\mathrm{a}=0$ or $\mathrm{b}=0$
(a,b are real numbers, then either $(x-\alpha)=0$ or $(\alpha-\beta)=0$ or both.
In general, suppose that there are integers $\mathrm{p}, \mathrm{q}, \mathrm{r}$ and s such that:
$a x^{2}+b x+c=0$, if $\left(p_{x}+q\right)\left(r_{x}+s\right)$
Find the quadratic equation the roots of which are the squares of the roots of the equation.
$a x^{2}+b x+c=0$

Solution:

$\alpha+\beta=(-b) /(a), \alpha \beta=c /(a)$
The roots are of the required equation on α^{2} and β^{2}, we need to calculate the sum of the roots and product of roots.
$\alpha^{2}+\beta^{2}$ and $\alpha^{2} \beta^{2}$
from symmetric identities,
$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta$

$$
\begin{aligned}
& \left(b^{\wedge} 2\right) / a^{\wedge} 2-2 c /(a)=\left(b^{\wedge} 2-4 a c\right) / a^{\wedge} 2 \text { and } \\
& \alpha^{2} \beta^{2}=(\alpha \beta)^{2}=\left(c^{\wedge} 2\right) / a^{\wedge} 2
\end{aligned}
$$

The required equation is:
$\mathrm{x} 2-\left(\left(b^{\wedge} 2-4 a c\right) / a^{\wedge} 2\right) x+\left(c^{\wedge} 2\right) / a^{\wedge} 2$
And on multiplying through by a^{2}
$a^{\wedge} 2 x^{2}-(\llbracket 2 a c-b \rrbracket \wedge 2) x+c^{\wedge} 2=0$
Example
The quadratic equation
$2 x^{2}-3 x+6=0$
The two roots if α and β obtains a quadratic equation in x which has α^{3} and β^{3}

Solution:

$\alpha+\beta=3 / 2, \alpha \beta=3$
therefore: $\alpha^{3}+\beta^{3}=(\alpha+\beta)^{3}-3 \alpha \beta(\alpha+\beta)$
by the symmetric identities
$=27 / 8-3 \times 3(3 / 2)$
$=27 / 8-27 / 2=-101 / 8$
$\alpha^{3} \beta^{3}=(\alpha \beta)^{3}=27$
Solve:
Find the value of c in the quadratic equation:
$x^{2}+\mathrm{c} x+c=0$
If one of the roots is half of the other

Solution:

Let the root be α and $1 /(2) \alpha$ then
$3 /(2) \alpha=-c, 1 /(2) \alpha^{\wedge} 2=c$
Therefore: $\alpha^{\wedge} 2=2 c=(\llbracket 4 c \rrbracket \wedge 2) / 9$

$$
c=(9) / 2
$$

ASSIGNMENT:

If α and β are the roots of quadratic equations $2 \mathrm{x}^{2}+7 \mathrm{x}+3=0$.
Obtain the equation the roots which are (1)/($\left.\alpha^{\wedge} 2\right)$ and $(1) /\left(\beta^{\wedge} 2\right)$
Let $\mathrm{a} b$ and c denotes real constant, show that if the quadratic equation:
$x^{2}-(3 c-b) x+b c=0$, has equal roots, then so does:

$$
x^{2}-(5 c-b) x+4 c^{2}=0
$$

